Violympic toán 9

VV

Cho 3 số a,b,c thỏa mãn:\(0\le a,b,c\le2\) và a+b+c=3

cmr: \(a^3+b^3+c^3\le9\)

DD
25 tháng 7 2018 lúc 11:34

Theo hằng đẳng thức đáng nhớ ta có :

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)

\(\Leftrightarrow a^3+b^3+c^3=3\left(a^2+b^2+c^2-ab-bc-ca+abc\right)\left(1\right)\)

Ta lại có : \(0\le a,b,c\le2\Rightarrow\left\{{}\begin{matrix}abc\ge0\\\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow8-4a-4b-4c+2ab+2bc+2ca-abc\ge0\)

\(\Leftrightarrow2ab+2bc+2ca-4\ge abc\Leftrightarrow abc\le-4\) ( Vì \(a,b,c\ge0\) ) \(\left(2\right)\)

Thay (2) vào (1) ta được :

\(a^3+b^3+c^3\le3\left(a^2+b^2+c^2-ab-bc-ca-4\right)=3\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]=3\left(9-3\left(ab+bc+ca\right)\right)\)

Mà từ (2) ta lại có : \(2ab+2bc+2ca\ge abc+4=4\Rightarrow ab+bc+ca\ge2\Rightarrow-3\left(ab+bc+ca\right)\le-6\)

\(\Rightarrow a^3+b^3+c^3\le3\left(9-6\right)=9\)

Dấu \("="\) xảy ra khi \(a=0;b=1;c=2\) và hoán vị

Bình luận (1)
HV
20 tháng 7 2019 lúc 20:50

Giả sử \(a=max\left\{a,b,c\right\}\)

Do đó \(3=a+b+c\le3a\)

\(\Rightarrow a\in\left[1;2\right]\)

Ta có: \(a^3+b^3+c^3\le a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3=9+\left(a-1\right)\left(a-2\right)\le9\)Vậy bài toán đã được chứng minh

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
DF
Xem chi tiết
VD
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết