Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

ML

Cho 3 điểm A(1;2), B(3;4), C(2;-1)

a) Chứng minh rằng 3 điểm ABC là đỉnh 1 tam giác

b) Tìm tọa độ trọng tâm G, trực tâm H và tâm đường tròn ngoại tiếp của tam giác ABC

DL
31 tháng 3 2016 lúc 20:07

a) Từ giả thiết suy ra \(\overrightarrow{AB}=\left(2;2\right);\overrightarrow{BC}=\left(-1;-5\right)\) 

Do \(2:\left(-1\right)\ne2:\left(-5\right)\) nên A, B, C không thẳng hàng hay A, B, C là ba đỉnh của một tam giác

b)

- Gọi \(G\left(x_1;y_1\right)\) là trọng tâm của tam giác ABC.

Khi đó \(x_1=\frac{1+3+3}{3}=2\) và \(y_1=\frac{2+4+\left(-1\right)}{3}=\frac{5}{3}\)

Suy ra \(G\left(2;\frac{5}{3}\right)\)

- Gọi \(H\left(x_2,y_2\right)\) là trực tâm của tam giác ABC. Khi đó H thỏa mãn :

\(\begin{cases}AH\perp BC\\CH\perp AB\end{cases}\) \(\Rightarrow\begin{cases}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{CH}.\overrightarrow{AB}=0\end{cases}\)

Từ đó, ta có hệ 

\(\begin{cases}x_2+5y_2-6=0\\x_2+y_2-1=0\end{cases}\)

Giải hệ thu được ( \(x_2;y_2\)\(=\left(-\frac{3}{4};\frac{7}{4}\right)\) do đó \(H\left(-\frac{3}{4};\frac{7}{4}\right)\)

- Gọi \(I\left(x_3,y_3\right)\) là tâm đường tròn ngoại tiếp tam giác ABC,

do \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IH}\) nên ta có hệ :

\(\begin{cases}1-x_3+3-x_3+2-x_3=-\frac{3}{4}-x_3\\2-y_4+4-y_3-1-y_3=\frac{7}{4}-y_3\end{cases}\)

Giải hệ ta thu được \(\left(x_3,y_3\right)=\left(\frac{27}{8};\frac{13}{8}\right)\)

Do đó \(I\left(\frac{27}{8};\frac{13}{8}\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
DA
Xem chi tiết
NH
Xem chi tiết
CT
Xem chi tiết
MH
Xem chi tiết
NL
Xem chi tiết
MB
Xem chi tiết
DN
Xem chi tiết
YB
Xem chi tiết