Từ đề bài ta có:
\(2\sqrt{xy}\le x+y=1\)
\(\Rightarrow xy\le\dfrac{1}{4}\)
Ta có:
\(P=\left(1-\dfrac{1}{x^2}\right)\left(1-\dfrac{1}{y^2}\right)=\dfrac{1-x^2-y^2+x^2y^2}{x^2y^2}\)
\(=1+\dfrac{-\left(x+y\right)^2+2xy+1}{x^2y^2}\)
\(=1+\dfrac{2}{xy}\ge1+8=9\)
Vậy GTNN là A = 9 khi \(x=y=\dfrac{1}{2}\)