Violympic toán 8

VT

Cho a,b, c>0 thỏa mãn a+b+c=3.

CMR: \(\dfrac{a^3}{\left(a+1\right)\left(b+1\right)}+\dfrac{b^3}{\left(b+1\right)\left(c+1\right)}+\dfrac{c^3}{\left(c+1\right)\left(a+1\right)}>=\dfrac{3}{4}\)

AH
10 tháng 3 2018 lúc 16:51

Lời giải:

Áp dụng BĐT AM-GM cho các số dương ta có:

\(\frac{a^3}{(a+1)(b+1)}+\frac{a+1}{8}+\frac{b+1}{8}\geq 3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

\(\frac{b^3}{(b+1)(c+1)}+\frac{b+1}{8}+\frac{c+1}{8}\geq 3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\)

\(\frac{c^3}{(c+1)(a+1)}+\frac{c+1}{8}+\frac{a+1}{8}\geq 3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\)

Cộng theo vế:

\(\Rightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}+\frac{a+b+c+3}{4}\geq \frac{3}{4}(a+b+c)\)

\(\Leftrightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}+\frac{3}{2}\geq \frac{9}{4}\)

\(\Leftrightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}\geq \frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
H24
Xem chi tiết
MS
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TK
Xem chi tiết
LM
Xem chi tiết
NT
Xem chi tiết