\(\lim\dfrac{1+a+...+a^n}{1+b+...+b^n}=\lim\dfrac{\dfrac{1-a^n}{1-a}}{\dfrac{1-b^n}{1-b}}=\lim\dfrac{\left(1-a^n\right)\left(1-b\right)}{\left(1-b^n\right)\left(1-a\right)}=\dfrac{1-b}{1-a}\)
\(\Rightarrow\dfrac{1-b}{1-a}=\dfrac{2}{3}\Leftrightarrow3-3b=2-2a\)
\(\Leftrightarrow2a-3b=-1\)