Nguyễn Anh Kim Hân: xin lỗi bạn vì bây giờ mình mới có thời gian đọc bài của bạn. Hơi muộn nhưng chúc bạn thi đạt kết quả tốt.
Lời giải:
Vì $0\leq a,b,c\leq 1\Rightarrow b^{2019}\leq b; c^{2020}\leq c$
$\Rightarrow P\leq a+b+c-(ab+bc+ac)(1)$
Theo đề bài: $a,b,c\leq 1$
$\Rightarrow (a-1)(b-1)(c-1)\leq 0$
$\Leftrightarrow a+b+c-(ab+bc+ac)\leq 1-abc$
Mà $abc\geq 0$ nên $a+b+c-(ab+bc+ac)\leq 1(2)$
Từ $(1);(2)\Rightarrow P\leq 1$
Vậy $P_{\max}=1$. Dấu "=" xảy ra khi $(a,b,c)=(0,1,1); (0,0,1)$ và các hoán vị.