Violympic toán 9

NP

cho 0 ≤a,b,c≤1 tìm max của

P = a +b2019+c2020 - ab-bc-ac

AH
17 tháng 9 2019 lúc 13:59

Lời giải:

Do $a,b,c\in [0;1]$ nên $b^{2019}\leq b; c^{2020}\leq c$

$\Rightarrow P\leq a+b+c-ab-bc-ac$

Mặt khác, cũng vì $a,b,c\in [0;1]$ nên:

$(a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow abc-(ab+bc+ac)+(a+b+c)-1\leq 0$

$\Leftrightarow a+b+c-ab-bc-ac\leq 1-abc$

Mà $1-abc\leq 1$ do $a,b,c\geq 0$

Do đó $P\leq a+b+c-ab-bc-ac\leq 1$

Vậy $P_{\max}=1$. Giá trị này đạt được tại $(a,b,c)=(0,0,1)$ hoặc $(0,1,1)$ và các hoán vị của chúng.

Bình luận (0)
AH
30 tháng 9 2019 lúc 19:42

Lời giải:

Do $a,b,c\in [0;1]$ nên $b^{2019}\leq b; c^{2020}\leq c$

$\Rightarrow P\leq a+b+c-ab-bc-ac$

Mặt khác, cũng vì $a,b,c\in [0;1]$ nên:

$(a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow abc-(ab+bc+ac)+(a+b+c)-1\leq 0$

$\Leftrightarow a+b+c-ab-bc-ac\leq 1-abc$

Mà $1-abc\leq 1$ do $a,b,c\geq 0$

Do đó $P\leq a+b+c-ab-bc-ac\leq 1$

Vậy $P_{\max}=1$. Giá trị này đạt được tại $(a,b,c)=(0,0,1)$ hoặc $(0,1,1)$ và các hoán vị của chúng.

Bình luận (0)

Các câu hỏi tương tự
TS
Xem chi tiết
BA
Xem chi tiết
LA
Xem chi tiết
NT
Xem chi tiết
LD
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
LD
Xem chi tiết
AR
Xem chi tiết