Violympic toán 9

NT

Câu 5: Tìm a, b để đường thẳng ax – 2y = b đi qua điểm M(1;2) và giao điểm của hai đường thẳng (d): x – 2y = 4, (d’): –3x + y = 3.

Câu 6: Tìm n để hệ phương trình \(\left\{{}\begin{matrix}x+2y=n\\2x-3y=5\end{matrix}\right.\) có nghiệm (x;y) thỏa x < 0, y > 0.

NL
26 tháng 2 2020 lúc 11:43

Câu 6 :

Ta có hệ phương trình : \(\left\{{}\begin{matrix}x+2y=n\left(I\right)\\2x-3y=5\left(II\right)\end{matrix}\right.\)

- Từ ( I ) ta có phương trình :\(x+2y=n\)

=> \(x=n-2y\left(III\right)\)

- Thay x = n - 2y vào phương trình (II ) ta được : \(2\left(n-2y\right)-3y=5\)

=> \(2n-4y-3y=5\)

=> \(-7y=5-2n\)

=> \(y=\frac{5-2n}{-7}=\frac{2n-5}{7}\)

- Thay \(y=\frac{2n-5}{7}\) vào phương trình ( III ) ta được : \(x=n-\frac{2\left(2n-5\right)}{7}\)

=> \(x=\frac{7n}{7}-\frac{4n-10}{7}\)

=> \(x=\frac{3n-10}{7}\)

Ta có : \(\left\{{}\begin{matrix}x< 0\\y>0\end{matrix}\right.\) ( IV )

- Thay \(x=\frac{3n-10}{7}\), \(y=\frac{2n-5}{7}\) vào hệ bất phương trình ( IV ) ta được : \(\left\{{}\begin{matrix}\frac{3n-10}{7}< 0\\\frac{2n-5}{7}>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3n-10< 0\\2n-5>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3n< 10\\2n>5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}n< \frac{10}{3}\\n>\frac{5}{2}\end{matrix}\right.\)

=> \(\frac{5}{2}< n< \frac{10}{3}\)

Vậy để phương trình trên có nghiệm (x, y ) thỏa mãn x <0, y > 0 thì \(\frac{5}{2}< n< \frac{10}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NS
Xem chi tiết
PH
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết
LE
Xem chi tiết
TL
Xem chi tiết