§3. Hàm số bậc hai

HT

Câu 1: Tìm tất cả cá giá trị của tham số a để GTNN của hàm số y = f(x) = \(4x^2-4ax+\left(a^2-3x+2\right)\)trên đoạn [0;2] là bằng 3?

Câu 2: Hàm số y = \(-x^2+2x+m-4\) đạt GTLN trên đoạn [-1;2] bằng 3 khi m thuộc?

Câu 3: GTNN của hàm số y =\(x^2+2mx+5\) bằng 1 khi giá trị của tham số m là?

Câu 4: Tìm tất cả các giá trị dương của tham số m để hàm số f(x) = \(mx^2-4x-m^2\) luôn nghịch biến trên (-1;2)

NL
24 tháng 10 2019 lúc 23:45

Câu 1: Thay kí hiệu tham số là m cho đỡ nhầm lẫn với hệ số a;b;c của hàm

\(f\left(x\right)=4x^2-\left(4m+3\right)x+m^2+2=0\)

\(a=4>0\) ; \(-\frac{b}{2a}=\frac{4m+3}{8}\)

Hàm đồng biến khi \(x>\frac{4m+3}{8}\) và nghịch biến khi \(x< \frac{4m+3}{8}\)

- TH1: Nếu \(\frac{4m+3}{8}\le0\Leftrightarrow m\le-\frac{3}{4}\Rightarrow f\left(x\right)\) đồng biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=m^2+2=3\Rightarrow\left[{}\begin{matrix}m=1>-\frac{3}{4}\left(l\right)\\m=-1\end{matrix}\right.\)

- TH2: Nếu \(\frac{4m+3}{8}\ge2\Leftrightarrow m\ge\frac{13}{4}\Rightarrow f\left(x\right)\) nghịch biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(2\right)=m^2-8m+12=3\)

\(\Leftrightarrow m^2-8m+9=0\Rightarrow\left[{}\begin{matrix}m=4+\sqrt{7}\\m=4-\sqrt{7}< \frac{13}{4}\left(l\right)\end{matrix}\right.\)

- TH3: \(0< \frac{4m+3}{8}< 2\Rightarrow0< m< \frac{14}{3}\)

\(\Rightarrow f\left(x\right)_{min}=f\left(\frac{4m+3}{8}\right)=\frac{23-24m}{16}=2\Rightarrow m=-\frac{3}{8}\left(l\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
25 tháng 10 2019 lúc 0:11

Câu 2:

Ta có \(a=-1< 0\) ; \(-\frac{b}{2a}=1\in\left[-1;2\right]\)

\(\Rightarrow f\left(x\right)_{max}=f\left(1\right)=m-3\)

\(\Rightarrow m-3=3\Rightarrow m=6\)

Câu 3:

\(a=1>0\Rightarrow f\left(x\right)_{min}=f\left(-\frac{b}{2a}\right)=f\left(-m\right)\)

\(\Rightarrow-m^2+5=1\Rightarrow m^2=4\Rightarrow m=\pm2\)

Câu 4:

\(a=m>0\); \(-\frac{b}{2a}=\frac{2}{m}\) \(\Rightarrow\) hàm số nghịch biến trên \(\left(-\infty;\frac{2}{m}\right)\)

Để hàm số nghịch biến trên \(\left(-1;2\right)\)

\(\Leftrightarrow2\le\frac{2}{m}\Leftrightarrow m\le1\Rightarrow m=1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
CK
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
NQ
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NA
Xem chi tiết
QD
Xem chi tiết
H24
Xem chi tiết