Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

HP

Cảm ơn bạn Nguyễn Việt Lâm đã nói đề mình sai và sau khi xem lại thì đây

A) Cho csc (Un) có các số hạng đều nguyên với \(\left\{{}\begin{matrix}U3+U2=6\\U3.U6=4\end{matrix}\right.\)

Tính số hạng thứ mười của csc đó

B) Tính tổng 10 số hạng đầu của một csc (Un) biết \(\left\{{}\begin{matrix}U2-U3+U5=10\\U4+U6=26\end{matrix}\right.\)

C) Tìm số hạng đầu và công sai của csc (Un) biết \(\left\{{}\begin{matrix}S7=63\\U4.U6=117\end{matrix}\right.\)

NL
20 tháng 2 2020 lúc 13:45

a/ Đề vẫn giống cũ, kết quả rất xấu nên chắc chắn sai (vì các số hạng nguyên nên \(u_1\) và d đều phải nguyên, do đó nghiệm của pt phải đẹp)

b/ \(\left\{{}\begin{matrix}u_1+d-\left(u_1+2d\right)+u_1+4d=10\\u_1+3d+u_1+5d=26\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1+3d=10\\2u_1+8d=26\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\)

\(\Rightarrow u_{10}=u_1+9d=1+9.3=28\)

c/ \(\left\{{}\begin{matrix}S_7=\frac{7\left(2u_1+6d\right)}{2}=63\\\left(u_1+3d\right)\left(u_1+5d\right)=117\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1+3d=9\\u_1^2+8u_1d+15d^2=117\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1=9-3d\\u_1^2+8u_1d+15d^2=117\end{matrix}\right.\)

\(\Rightarrow\left(9-3d\right)^2+8d\left(9-3d\right)+15d^2-117=0\)

\(\Leftrightarrow18d-36=0\Rightarrow d=2\Rightarrow u_1=3\)

Đó, 2 bài sau đề đúng là kết quả đẹp liền

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BB
Xem chi tiết
NK
Xem chi tiết
BB
Xem chi tiết
DH
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
TN
Xem chi tiết
DH
Xem chi tiết