Bất phương trình bậc nhất một ẩn

H24

Các bn giúp mk giải chi tiết bài này với, mk cho 3 k :

Cho a,b,c là ba cạnh của tam giác.C/m: \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)

ND
24 tháng 3 2019 lúc 17:58

Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{matrix}\right.\)

Đặt \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)

\(A=\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}+\frac{\frac{y+z}{2}}{x}\)

\(A=\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\)

\(A=\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}+\frac{y}{2x}+\frac{z}{2x}\)

Áp dụng BĐT AM-GM ta có:

\(A\ge6\sqrt[6]{\frac{x}{2y}.\frac{z}{2y}.\frac{x}{2z}.\frac{y}{2z}.\frac{z}{2x}.\frac{y}{2x}}=6.\frac{1}{2}=3\)

Dấu " = " xảy ra <=> x=y=z <=> a=b=c

Bình luận (0)
NT
24 tháng 3 2019 lúc 17:54

Áp dụng BĐT AM-GM ta có $\sum \frac{a}{b+c-a} \ge 3 \sqrt[3]{ \frac{abc}{(a+b-c)(b+c-a)(c+a-b)}} \ge 3$.

Dấu đẳng thức xảy ra khi và chỉ khi $a=b=c$.

Bình luận (0)
Y
24 tháng 3 2019 lúc 18:04

Vì a,b,c là 3 cạnh của 1 tam giác nên \(\left\{{}\begin{matrix}b+c-a>0\\a+b-c>0\\c+a-b>0\end{matrix}\right.\)

* Ta cm bđt : \(a^2+b^2+c^2\ge ab+bc+ca\)

+ \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương nên bđt ban đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Do đó : \(-\left(a^2+b^2+c^2\right)\le ab+bc+ca\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\)\(\le2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\le ab+bc+ca\)

+ \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

Do đó : \(2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\le\frac{\left(a+b+c\right)^2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

* Áp dụng bđt Cauchy Schwaz ta có :

\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\) \(=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ac+bc-c^2}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\) \(\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
KH
Xem chi tiết
TL
Xem chi tiết
DM
Xem chi tiết
NT
Xem chi tiết
VH
Xem chi tiết
NA
Xem chi tiết
TX
Xem chi tiết
H24
Xem chi tiết