Chương 4: GIỚI HẠN

H24

Biết \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{ax^2+4x+8}-\sqrt[3]{81x^2+63x-19}}{x^3-x^2-x+1}=\dfrac{b}{c}\). Tính a+b+c

NL
19 tháng 1 2024 lúc 22:24

\(\sqrt{a+12}-\sqrt[3]{81+63-19}=0\Rightarrow a=13\)

Khi đó

\(\dfrac{\sqrt{13x^2+4x+8}-\sqrt[3]{81x^2+63x-19}}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{\sqrt[]{13x^2+4x+8}-\left(3x+2\right)+\left(3x+2-\sqrt[3]{81x^2+83x-19}\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{\dfrac{4\left(x-1\right)^2}{\sqrt[]{13x^2+4x+8}+\left(3x+2\right)}+\dfrac{27\left(x-1\right)^2\left(x+1\right)}{\left(3x+2\right)^2+\left(3x+2\right)\sqrt[3]{81x^2+63x-19}+\sqrt[3]{\left(81x^2+63x-19\right)^2}}}{\left(x-1\right)^2\left(x+1\right)}\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
TL
Xem chi tiết
TM
Xem chi tiết
QA
Xem chi tiết