Bài 2: Giới hạn của hàm số

ND

Biết \(lim_{x\rightarrow1}\frac{\sqrt{x}-1}{x^2+ax+2}=b\) , với a,b các số thực khác 0 . Tính giá trị của biểu thức T=a+b.

NC
19 tháng 2 2020 lúc 10:39

Vì b \(\ne\) 0 nên tồn tại f(x) sao cho:

\(x^2+ax+2=\left(x-1\right).f\left(x\right)\)

=> 1 + a + 2 = 0

=> a = -3; f(x) = x - 2

Khi đó:

\(\lim\limits_{x\rightarrow1}\frac{x-1}{\left(\sqrt{x}+1\right)\left(x-1\right)f\left(x\right)}=b\)

\(\Leftrightarrow\lim\limits_{x\rightarrow1}\frac{1}{\left(\sqrt{x}+1\right)f\left(x\right)}=b\)

\(\Leftrightarrow b=\lim\limits_{x\rightarrow1}\frac{1}{\left(\sqrt{x}+1\right)\left(x-2\right)}=\frac{1}{2.\left(-1\right)}=-\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
ND
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
77
Xem chi tiết