Bài 2: Giới hạn của hàm số

H24

\(\lim\limits_{x\rightarrow1}\)\(\dfrac{x^2+ax+b}{x^2-1}\)= -\(\dfrac{1}{2}\)

Tìm 2 số thực a,b

MH
23 tháng 2 2022 lúc 21:06

Tham khảo:

 

Vì hàm số có giới hạn hữu hạn tại x=1 nên biểu thức tử nhận x=1 làm nghiệm, hay 1+a+b=0.

Áp dụng vào giả thiết, được

\(^{lim}_{x\rightarrow1}\dfrac{x^2+ax-1-a}{x^2-1}=-\dfrac{1}{2}\Leftrightarrow^{lim}_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1+a\right)}{\left(x-1\right)\left(x+1\right)}=-\dfrac{1}{2}\)

\(\Leftrightarrow^{lim}_{x\rightarrow1}\dfrac{x+1+a}{x+1}=-\dfrac{1}{2}\Leftrightarrow\dfrac{2+a}{2}=-\dfrac{1}{2}\Leftrightarrow a=-3\)

\(\Rightarrow b=2\)

 

Bình luận (0)
 Minh Hiếu đã xóa
AH
23 tháng 2 2022 lúc 21:23

Lời giải:
Vì $x^2-1\to 0$ khi $x\to 1$ nên để giới hạn đã cho hữu hạn thì $x^2+ax+b$ nhận $x=1$ là nghiệm 

$\Leftrightarrow 1+a+b=0$

$\Leftrightarrow b=-a-1$

Khi đó:
\(\lim\limits_{x\to 1}\frac{x^2+ax+b}{x^2-1}=\lim\limits_{x\to 1}\frac{x^2+ax-a-1}{x^2-1}=\lim\limits_{x\to 1}\frac{(x-1)(x+1+a)}{(x-1)(x+1)}=\lim\limits_{x\to 1}\frac{x+a+1}{x+1}\)

\(=\frac{a+2}{2}=\frac{-1}{2}\Rightarrow a+2=-1\Rightarrow a=-3\)

$b=-a-1=3-1=2$

Bình luận (0)

Các câu hỏi tương tự
AN
Xem chi tiết
SK
Xem chi tiết
DD
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
XT
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết