Chương III - Hệ hai phương trình bậc nhất hai ẩn

DK
Bạn nào giúp mình với 2 chị em Linh và Long chơi lái xe. Đường chạy có tất cả 20 chướng ngại vật. Vượt qua chướng ngại trên đường thì được thưởng 2 điểm,nếu va chạm bị trừ 1,5 điểm. Biết 2 chị em đã va chạm 6 lần.Hỏi nếu muốn số điểm cuối cùng lớn hơn 5 điểm thì 2 chị em không va chạm tối thiểu bao nhiêu lần?
NL
9 tháng 2 2021 lúc 12:29

- Gọi số lần vượt qua chướng ngại vật và số lần va chạm là x và y ( số lần, x , y > 0 )

Theo bài ra trên đường chạy có tất cả 20 chướng ngại vật .

Nên ta có phương trình : \(x+y=20\) ( I )

- Số điểm bị trừ của 2 chị em là : \(1,5y\) ( điểm )

- Số điểm được thưởng của hai chị em là : \(2x\) ( điểm )

Mà để tổng số điểm lớn hơn 5 thì :

\(2x-1,5y>5\)

- Từ PT ( I ) ta được x = 20 - y

=> \(2\left(20-y\right)-1,5y>5\)

\(\Rightarrow40-3,5y>5\)

\(\Rightarrow y< 10\)

Mà hai chị em đã va chạm 6 lần .

Vậy để số điểm hơn 5 thì hai chị em chỉ được va chạm thêm 3 lần nữa .

Bình luận (1)

Các câu hỏi tương tự
TJ
Xem chi tiết
HV
Xem chi tiết
HK
Xem chi tiết
MM
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết