Ôn tập: Bất phương trình bậc nhất một ẩn

VV

Bài1

a)a4+b4≥a3b+ab3 ∀ a,b ∈ R

b)(x-3)(x-4)(x-5)(x-6)+3 >0 ∀ x

mn giải giup mk vs mk đang cần gấp thanks mn nha

AH
1 tháng 4 2019 lúc 1:15

Lời giải:

a) Xét hiệu:

\(a^4+b^4-(a^3b+ab^3)\)

\(=(a^4-a^3b)-(ab^3-b^4)\)

\(=a^3(a-b)-b^3(a-b)=(a-b)(a^3-b^3)=(a-b)(a-b)(a^2+ab+b^2)\)

\(=(a-b)^2(a^2+ab+b^2)\)

Ta thấy: \((a-b)^2\geq 0, \forall a,b\in\mathbb{R}\)

\(a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow a^4+b^4-(a^3b+ab^3)=(a-b)^2(a^2+ab+b^2)\geq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow a^4+b^4\geq ab^3+a^3b\) với mọi $a,b\in\mathbb{R}$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b$

b)

\((x-3)(x-4)(x-5)(x-6)+3\)

\(=[(x-3)(x-6)][(x-4)(x-5)]+3\)

\(=(x^2-9x+18)(x^2-9x+20)+3\)

\(=a(a+2)+3\) (đặt \(x^2-9x+18=a)\)

\(=a^2+2a+3=(a+1)^2+2\geq 2>0, \forall a\in\mathbb{R}\)

hay \((x-3)(x-4)(x-5)(x-6)+3>0, \forall x\in\mathbb{R}\) (đpcm)

Bình luận (0)
NV
2 tháng 4 2019 lúc 18:45

a) Xét hiệu:

a4+b4−(a3b+ab3)a4+b4−(a3b+ab3)

=(a4−a3b)−(ab3−b4)=(a4−a3b)−(ab3−b4)

=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)

=(a−b)2(a2+ab+b2)=(a−b)2(a2+ab+b2)

Ta thấy: (a−b)2≥0,∀a,b∈R(a−b)2≥0,∀a,b∈R

a2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈R

⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R

⇒a4+b4≥ab3+a3b⇒a4+b4≥ab3+a3b với mọi a,b∈Ra,b∈R

Ta có đpcm.

Dấu "=" xảy ra khi a=ba=b

b)

(x−3)(x−4)(x−5)(x−6)+3(x−3)(x−4)(x−5)(x−6)+3

=[(x−3)(x−6)][(x−4)(x−5)]+3=[(x−3)(x−6)][(x−4)(x−5)]+3

=(x2−9x+18)(x2−9x+20)+3=(x2−9x+18)(x2−9x+20)+3

=a(a+2)+3=a(a+2)+3 (đặt x2−9x+18=a)x2−9x+18=a)

=a2+2a+3=(a+1)2+2≥2>0,∀a∈R=a2+2a+3=(a+1)2+2≥2>0,∀a∈R

hay (x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R(x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R (đpcm)

a) Xét hiệu:

a4+b4−(a3b+ab3)a4+b4−(a3b+ab3)

=(a4−a3b)−(ab3−b4)=(a4−a3b)−(ab3−b4)

=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)

=(a−b)2(a2+ab+b2)=(a−b)2(a2+ab+b2)

Ta thấy: (a−b)2≥0,∀a,b∈R(a−b)2≥0,∀a,b∈R

a2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈R

⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R

⇒a4+b4≥ab3+a3b⇒a4+b4≥ab3+a3b với mọi a,b∈Ra,b∈R

Ta có đpcm.

Dấu "=" xảy ra khi a=ba=b

b)

(x−3)(x−4)(x−5)(x−6)+3(x−3)(x−4)(x−5)(x−6)+3

=[(x−3)(x−6)][(x−4)(x−5)]+3=[(x−3)(x−6)][(x−4)(x−5)]+3

=(x2−9x+18)(x2−9x+20)+3=(x2−9x+18)(x2−9x+20)+3

=a(a+2)+3=a(a+2)+3 (đặt x2−9x+18=a)x2−9x+18=a)

=a2+2a+3=(a+1)2+2≥2>0,∀a∈R=a2+2a+3=(a+1)2+2≥2>0,∀a∈R

hay (x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R(x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R (đpcm)v

Bình luận (1)

Các câu hỏi tương tự
QN
Xem chi tiết
NA
Xem chi tiết
PP
Xem chi tiết
HK
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
TD
Xem chi tiết
TN
Xem chi tiết