Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

QT

Bài tập 4: Trong không gian cho M (1 ; 2 ; 3) N ( - 3 ; 4 ; 1) P x + 2y - z + 4 = 0 a, Viết phương trình mặt phẳng trung trực MN b, Viết phương trình mặt phảng (β)(β) đi qua MN và song song (P).

NL
21 tháng 12 2020 lúc 8:28

\(\overrightarrow{NM}=\left(4;-2;2\right)=2\left(2;-1;1\right)\)

Gọi Q là trung điểm MN \(\Rightarrow Q\left(-1;3;2\right)\)

Phương trình mặt phẳng trung trực của MN (đi qua Q và nhận \(\overrightarrow{NM}\) là 1 vecto pháp tuyến) có dạng:

\(2\left(x+1\right)-1\left(y-3\right)+1\left(z-2\right)=0\)

\(\Leftrightarrow2x-y+z+3=0\)

b.

(P) có 1 vecto pháp tuyến là \(\left(1;2;-1\right)\)

Do \(\left(\beta\right)\) song song (P) nên cũng nhận \(\left(1;2;-1\right)\) là 1 vtpt

À thôi bạn ghi sai đề rồi, \(\left(\beta\right)\) chỉ có thể đi qua M hoặc N (1 điểm thôi), không thể đi qua MN được vì MN không song song với (P)

Bình luận (2)
QH
9 tháng 1 2021 lúc 15:07

iu

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
LV
Xem chi tiết
CC
Xem chi tiết
LV
Xem chi tiết
TT
Xem chi tiết
HM
Xem chi tiết
LV
Xem chi tiết
TC
Xem chi tiết
VL
Xem chi tiết