Ôn tập toán 7

TT

Bài 3:Tìm giá trị nhỏ nhất của các biểu thức sau:

a. B=|x-1|+|x-4| ; C=|1993-x|+|1994-x|; D=x2+|y-2|-5

b. C=|4x-3|+|5y+7,5|+17,5

c. M=|x-2002|+|x-2001|

HELP ME!!!!!

LF
2 tháng 10 2016 lúc 23:36

a)

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|x-4\right|\ge\left|x-1+4-x\right|=3\)

\(\Rightarrow B\ge3\)

Dấu = khi \(\left(x-1\right)\left(x-4\right)\ge0\)\(\Rightarrow1\le x\le4\)

Vậy MinB=3 khi \(1\le x\le4\)

Áp dụng tiếp Bđt kia ta có:

\(\left|1993-x\right|+\left|1994-x\right|\ge\left|1993-x+x-1994\right|=1\)

\(\Rightarrow C\ge1\)

Dấu = khi \(\left(x-1993\right)\left(x-1994\right)\ge0\)\(\Rightarrow1993\le x\le1994\)

Vậy MinC=1 khi \(1993\le x\le1994\)

Ta thấy: \(\begin{cases}x^2\\\left|y-2\right|\end{cases}\ge0\)

\(\Rightarrow x^2+\left|y-2\right|\ge0\)

\(\Rightarrow x^2+\left|y-2\right|-5\ge-5\)

\(\Rightarrow D\ge-5\)

Dấu = khi \(\begin{cases}x=0\\y=2\end{cases}\)

Vậy MinD=-5 khi \(\begin{cases}x=0\\y=2\end{cases}\)

b)Ta thấy:

\(\begin{cases}\left|4x-3\right|\\\left| 5y+7,5\right|\end{cases}\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

\(\Rightarrow C\ge17,5\)

Dấu = khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)

Vậy MinC=17,5 khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)

c)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2002\right|+\left|x-2001\right|\ge\left|x-2002+2001-x\right|=1\)

\(\Rightarrow M\ge1\)

Dấu = khi \(\left(x-2002\right)\left(x-2001\right)\ge0\)\(\Rightarrow2001\le x\le2002\)

Vậy MinM=1 khi \(2001\le x\le2002\)

Bình luận (1)

Các câu hỏi tương tự
DN
Xem chi tiết
AM
Xem chi tiết
DN
Xem chi tiết
NB
Xem chi tiết
TC
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết
TN
Xem chi tiết
SP
Xem chi tiết