Violympic toán 9

HX

Bài 3: (2,0 điểm)

1. Cho x, y là các số thực thoả mãn điều kiện: x2 + 5y2 – 4xy – x + 2y – 6 = 0. Chứng minh: -1x-2y+1≤4

Tìm nghiệm nguyên của phương trình: y3 – x3 = 2x + 1

NL
9 tháng 3 2019 lúc 22:48

\(x^2+4y^2+\frac{1}{4}-4xy-x+2y+y^2-\frac{25}{4}=0\)

\(\Leftrightarrow\left(x-2y-\frac{1}{2}\right)^2=\frac{25}{4}-y^2\le\frac{25}{4}\)

\(\Rightarrow\frac{-5}{2}\le x-2y-\frac{1}{2}\le\frac{5}{2}\)

\(\Rightarrow-2\le x-2y\le3\)

\(\Rightarrow-1\le x-2y+1\le4\) (đpcm)

Dấu "=" xảy ra khi \(y=0\)\(x=...\)

2/ \(x^3+2x+1=y^3\)

- Với \(x=0\Rightarrow y=1\)

\(VT=x^3+3x^2+3x+1-3x^2-x=\left(x+1\right)^3-x\left(3x+1\right)\) (1)

Do \(x\left(3x-1\right)\ge0\) \(\forall x\in Z\)

\(\Rightarrow VT\le\left(x+1\right)^3\Rightarrow y^3\le\left(x+1\right)^3\Rightarrow y\le x+1\)

Lại có:

\(VT=x^3-3x^2+3x-1+3x^2-x+2=\left(x-1\right)^3+3x^2-x+2\)

Do \(3x^2-x+2>0\) \(\forall x\Rightarrow VT>\left(x-1\right)^3\Rightarrow y^3>\left(x-1\right)^3\Rightarrow y>x-1\)

\(\Rightarrow x-1< y\le x+1\Rightarrow\left[{}\begin{matrix}y=x\\y=x+1\end{matrix}\right.\)

- Với \(y=x\) thay vào pt ta được: \(2x+1=0\Rightarrow x=\frac{-1}{2}\left(ktm\right)\)

- Với \(y=x+1\) từ \(\left(1\right)\Rightarrow x\left(3x+1\right)=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;1\right)\) là cặp nghiệm nguyên duy nhất

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
MD
Xem chi tiết
TT
Xem chi tiết
DH
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
TN
Xem chi tiết
DH
Xem chi tiết
BB
Xem chi tiết