Tứ giác

ND

Bài 2: Cho tam giác nhọn ABC. Gọi D, E, F lần lượt là trung điểm của AB, AC và BC. Vẽ điểm I sao cho D là trung điểm của IF.

a) CM: tứ giác BDEC là hình thang; b) CM: tứ giác AEFD, AFBI là hình bình hành.

 

NT
20 tháng 12 2023 lúc 19:23

a: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{1}{2}BC\)

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

b: Xét ΔABC có

D,F lần lượt là trung điểm của BA,BC

=>DF là đường trung bình của ΔABC

=>DF//AC và \(DF=\dfrac{AC}{2}\)

DF//AC

E\(\in\)AC

Do đó: DF//AE

Ta có: \(DF=\dfrac{AC}{2}\)

\(AE=\dfrac{AC}{2}\)

Do đó: DF=AE

Xét tứ giác ADFE có

DF//AE

DF=AE

Do đó: ADFE là hình bình hành

Xét tứ giác AFBI có

D là trung điểm chung của AB và FI

=>AFBI là hình bình hành

Bình luận (0)
AH
20 tháng 12 2023 lúc 19:28

Hình vẽ:

Bình luận (0)
AH
20 tháng 12 2023 lúc 19:27

Lời giải:

a. Do $D$ là trung điểm $AB$, $E$ là trung điểm $AC$ nên $DE$ là đường trung bình ứng với cạnh $BC$ của tam giác $ABC$

$\Rightarrow DE\parallel BC$

$\Rightarrow DECB$ là hình thang.

b. $E,F$ lần lượt là trung điểm $AC, BC$

$\Rightarrow EF$ là đường trung bình ứng với cạnh $AB$

$\Rightarrow EF\parallel AB$ và $EF=AB:2$

$\Rightarrow EF\parallel AD$ và $EF=AD$

$\Rightarrow AEFD$ là hình bình hành (tứ giác có 2 cạnh đối song song và bằng nhau)

Tứ giác $AFBI$ có 2 đường chéo $FI, AB$ cắt nhau tại trung điểm $D$ của mỗi đường nên $AFBI$ là hbh.

Bình luận (0)
AH
20 tháng 12 2023 lúc 19:30

Hình vẽ:

Bình luận (0)