a: \(CH=\dfrac{AH^2}{HB}=\dfrac{12}{2}=6\)
BC=BH+CH=8
\(AB=\sqrt{2\cdot8}=4\)
\(AC=\sqrt{6\cdot8}=4\sqrt{3}\)
Xét ΔABC vuông tại A có
\(sinC=cosB=\dfrac{1}{2}\)
\(cosC=sinB=\dfrac{\sqrt{3}}{2}\)
tan C=cot B=1/căn 3
cot C=tan B=căn 3
b: \(BH=\dfrac{6^2}{2\sqrt{3}}=6\sqrt{3}\)
\(BC=8\sqrt{3}\)
\(AB=\sqrt{6\sqrt{3}\cdot8\sqrt{3}}=12\)
\(AC=\sqrt{2\sqrt{3}\cdot8\sqrt{3}}=4\sqrt{3}\)
sin B=cos C=1/2
cos B=sin C=căn 3/2
tan B=cot C=1/căn 3
cot B=tan C=căn 3
c: \(AH=\sqrt{25\cdot9}=15\)
\(AB=\sqrt{25\cdot34}=5\sqrt{34}\)
\(AC=\sqrt{9\cdot34}=3\sqrt{34}\)
sin C=cos B=AB/BC=5 căn 34/34
cos C=sin B=AC/BC=3 căn 34/34
tan C=cot B=5/3
cot C=tan B=3/5