Bài 7: Định lí

H24

Bài 2: Cho góc xOy khác góc bẹt. Trên tia Ox lấy điểm M, trên tia Oy lấy điểm N sao cho OM = ON. Đoạn thẳng MN cắt tia Oz là tia phân giác của góc xOy tại điểm P. Chứng minh: a) ∆MOP = ∆NOP. b) P là trung điểm của MN. c) OP vuông góc với MN.

NT
30 tháng 9 2021 lúc 23:07

a: Xét ΔMOP và ΔNOP có 

OM=ON

\(\widehat{MOP}=\widehat{NOP}\)

OP chung

Do đó: ΔMOP=ΔNOP

b: Ta có: ΔMOP=ΔNOP

Suy ra: PM=PN

hay P là trung điểm của MN

c: Ta có: OM=ON

nên O nằm trên đường trung trực của MN(1)

Ta có: P là trung điểm của MN

nên P nằm trên đường trung trực của MN(2)

từ (1) và (2) suy ra OP là đường trung trực của MN

hay OP\(\perp\)MN

Bình luận (0)