Violympic toán 8

HT

Bài 1:Cho a,b,c là các số dương .Chứng minh bất đẳng thức

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>hoacbang\frac{a+b+c}{2}\)

NL
13 tháng 2 2020 lúc 11:35

Cauchy-Schwarz trực tiếp là được, hoặc chúng ta có thể dùng Cô-si:

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)

Tương tự: \(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b\); \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

Cộng vế với vế:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
LH
Xem chi tiết
TP
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
OM
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
TB
Xem chi tiết