Violympic toán 8

HT

Bài 1:a,Cho a+b+c​​≠0 và a3+b3+c3=3abc.Tính N=\(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)

b,Tìm số tự nhiên n để n2+4n+2013 là 1 số chính phương

HN
13 tháng 2 2020 lúc 10:47

a, \(a^3+b^3+c^3=3abc\)

\(a^3+b^3+c^3-3abc=0\)

\(\left(a+b\right)^3+c^3-3abc-3a^2b-3ab^2=0\)

\(\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc-3ab\right)=0\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(a^2+b^2+c^2-ab-bc-ac=0\left(a+b+c\ne0\right)\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(a=b=c\)

\(=\frac{a^{2016}+a^{2016}+a^{2016}}{\left(a+a+a\right)^{2016}}=\frac{3a^{2016}}{3^{2016}\cdot a^{2016}}=\frac{1}{3^{2015}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
14 tháng 2 2020 lúc 6:30

b/ \(n^2+4n+2013=k^2\) (\(k\in N\))

\(\Leftrightarrow\left(n+2\right)^2+2009=k^2\)

\(\Leftrightarrow k^2-\left(n+2\right)^2=2009\)

\(\Leftrightarrow\left(k-n-2\right)\left(k+n+2\right)=2009=1.2009=7.287=41.49\)

Do \(k-n-2< k+n+2\) nên ta chỉ cần xét 3 trường hợp:

\(\left\{{}\begin{matrix}k-n-2=1\\k+n+2=2009\end{matrix}\right.\) \(\Rightarrow2n+4=2008\Rightarrow n=1002\)

\(\left\{{}\begin{matrix}k-n-2=7\\k+n+2=287\end{matrix}\right.\) \(\Rightarrow n=138\)

\(\left\{{}\begin{matrix}k-n-2=41\\k+n+2=49\end{matrix}\right.\) \(\Rightarrow n=2\)

Vậy \(n=\left\{2;138;1002\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LS
Xem chi tiết
NH
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
MS
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
TQ
Xem chi tiết