Bài 5: Giải bài toán bằng cách lập hệ phương trình

TH

Bài 14: Một canô xuôi dòng 108 km, rồi ngược dòng 63 km, mất 7 giờ. Lần thứ hai, canô đó xuôi dòng 81 km rồi ngược dòng 84 km cũng mất 7 giờ. Tính vận tốc dòng nước, vận tốc thực của canô.

HQ
17 tháng 2 2021 lúc 9:48

Vận tốc cano khi xuôi dòng là x+y  (km/h) và vận tốc cano khi ngược dòng là x-y(km/h)

( Trong đó x và y lần lượt là vận tốc cano và vận tốc dòng nước )

Theo đề bài ta có: \(\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\left(1\right)\) (cả xuôi cả về hết 7h)

Tương tự ta cũng có: \(\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\left(2\right)\)

từ (1) và (2) Ta có hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\\\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\end{matrix}\right.\)

Đặt 1/x+y = a và 1/x-y = b

hệ viết lại thành: \(\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{x+y}=\dfrac{1}{27}\\b=\dfrac{1}{x-y}=\dfrac{1}{21}\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)

Vậy......

Bình luận (0)
H24
17 tháng 2 2021 lúc 10:35

Gọi tốc độ của ca nô khi dòng nước đứng yên là x (km/h) và tốc độ dòng nước là y (km/h).

Khi đó vận tốc của ca nô khi xuôi dòng là x+y(km/h) và tốc độ của ca nô khi ngược dòng là x–y(km/h)

Lần thứ nhất:

Thời gian ca nô xuôi dòng là \(\dfrac{108}{x+y}\left(h\right)\)

Thời gian ca nô ngược dòng là \(\dfrac{63}{x-y}\left(h\right)\)

Vì ca nô xuôi dòng 108 km, rồi ngược dòng 63 km, mất 7 giờ nên ta có phương trình \(\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\) (1)

Lần thứ hai:

Thời gian ca nô xuôi dòng là \(\dfrac{81}{x+y}\)(h)

Thời gian ca nô ngược dòng là \(\dfrac{84}{x-y}\left(h\right)\)

Vì ca nô xuôi dòng 108 km, rồi ngược dòng 63 km, mất 7 giờ nên ta có phương trình \(\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:=> \(\left\{{}\begin{matrix}\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\\\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\end{matrix}\right.\)

Đặt \(a=\dfrac{1}{x+y};b=\dfrac{1}{x-y}\) \(\left(x,y\ne0\right)\)

Ta có: \(\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}324a+189b=21\\324a+336b=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-147b=-7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a+84.\dfrac{1}{21}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a+4=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\a=\dfrac{1}{27}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=\dfrac{1}{27}\\\dfrac{1}{x-y}=\dfrac{1}{21}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\27-y-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\27-2y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)

Vậy tốc độ của ca nô khi dòng nước đứng yên là 24km/h và tốc độ của dòng nước là 3km/h.

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
VV
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
NA
Xem chi tiết
TQ
Xem chi tiết