Bài 5: Xác suất của biến cố

H24

Bài 1. Từ 1 hộp có 15 tấm thẻ được đánh số từ 1-15. Rút ngẫu nhiên 1 thẻ . Tính xác suất

a) Thẻ lấy ra mang số chẵn

b). Thẻ lấy ra là số nguyên tố

c). Thẻ lấy ra không nhỏ hơn 7

Bài 2. Từ 1 hộp gồm 18 viên bi có cùng kích thước trong đó có 5 bị xanh, 6 bị đỏ và 7 bị vàng. Lấy ra 5 bị bất kì

a) Tính xác suất của biển cố B " 5 bi lấy ra có cùng màu sắc"

b) Tính xác suất của biến cổ C - 5 bi lấy ra đủ 3 màu, trong đó luôn có đúng 2 bị đỏ

c) Tính xác suất của biển cỗ D " 5 bị lấy ra luôn có ít nhất 1 bị xanh”

HP
6 tháng 12 2021 lúc 18:35

1.

\(\left|\Omega\right|=15\)

a, \(P\left(A\right)=\dfrac{7}{15}\)

b, \(P\left(B\right)=\dfrac{2}{5}\)

c, \(P\left(C\right)=\dfrac{3}{5}\)

Bình luận (0)
HP
6 tháng 12 2021 lúc 18:45

2.

\(\left|\Omega\right|=C^5_{18}\)

a, \(\left|\Omega_A\right|=C^5_5+C^5_6+C^5_7\)

\(P\left(B\right)=\dfrac{C^5_5+C^5_6+C^5_7}{C^5_{18}}=\dfrac{1}{306}\)

b, TH1: 2 bi đỏ, 1 bi xanh, 2 bi vàng

\(\Rightarrow\) Có \(C^2_6.C^1_5.C^2_7\) cách lấy.

TH2: 2 bi đỏ, 2 bi xanh, 1 bi vàng

\(\Rightarrow\) Có \(C^2_6.C^2_5.C^1_7\) cách lấy.

\(\Rightarrow\left|\Omega_C\right|=C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7\)

\(\Rightarrow P\left(C\right)=\dfrac{C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7}{C^5_{18}}=\dfrac{10}{51}\)

c, \(\overline{D}\) là biến cố không lấy ra bi xanh nào.

\(\left|\Omega_{\overline{D}}\right|=C^5_{13}\)

\(\Rightarrow P\left(\overline{D}\right)=\dfrac{C^5_{13}}{C^5_{18}}=\dfrac{143}{952}\)

\(\Rightarrow P\left(D\right)=1-\dfrac{143}{952}=\dfrac{809}{952}\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
NA
Xem chi tiết
NP
Xem chi tiết
NP
Xem chi tiết
BT
Xem chi tiết
MS
Xem chi tiết
LN
Xem chi tiết
DM
Xem chi tiết
NL
Xem chi tiết