Chương I - Căn bậc hai. Căn bậc ba

NL

Bài 1: Tính

A=\(\sqrt{5-2\text{√}6}+\sqrt{5+2\text{√}6}\)

B= \(\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8-2\text{√}15}\)

C=\(\sqrt{4+\text{√}7}+\sqrt{4-\text{√}7}\)

D=\(\left(3+\text{√}5\right)\left(\text{√}10-\text{√}2\right)\sqrt{3-\text{√}5}\)

Bài 2: Phân tích thành nhân tử

a, ab+ba+√a+1; a>=0

b, x-2\(\sqrt{xy}\)+y \(\left(x\ge0;y\ge0\right)\)

c, \(\sqrt{xy}+2\text{√}x-3\text{√}y-6\)\(\left(x\ge0;y\ge0\right)\)

Bài 3: Rút gọn

M= \(\left(\frac{1}{\text{√}x-1}-\frac{1}{\text{√}x}\right)\div\left(\frac{\text{√}x+1}{\text{√}x-2}-\frac{\text{√}x+2}{\text{√}x-1}\right)\)

a, Rút gọn M

b, Tính giá trị của M khi x=2

c, Tìm x để M>0

AH
26 tháng 6 2019 lúc 17:34

Bài 1:

\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)

\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)

\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)

\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)

\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)

\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)

\(\Rightarrow C=\sqrt{14}\)

\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)

\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)

Bình luận (0)
AH
26 tháng 6 2019 lúc 17:37

Bài 2:

a) Bạn xem lại đề.

b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)

c)

\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)

\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)

Bình luận (0)
AH
26 tháng 6 2019 lúc 17:43

Bài 3:

a) ĐKXĐ:\(x>0; x\neq 1; x\neq 4\)

\(M=\frac{\sqrt{x}-(\sqrt{x}-1)}{(\sqrt{x}-1)\sqrt{x}}:\frac{(\sqrt{x}+1)(\sqrt{x}-1)-(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}-1)}\)

\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{(x-1)-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{3}{(\sqrt{x}-2)(\sqrt{x}-1)}\)

\(\frac{1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-2)(\sqrt{x}-1)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

b)

Khi $x=2$ \(M=\frac{\sqrt{2}-2}{3\sqrt{2}}=\frac{1-\sqrt{2}}{3}\)

c)

Để \(M>0\leftrightarrow \frac{\sqrt{x}-2}{3\sqrt{x}}>0\leftrightarrow \sqrt{x}-2>0\leftrightarrow x>4\)

Kết hợp với ĐKXĐ suy ra $x>4$

Bình luận (0)

Các câu hỏi tương tự
PD
Xem chi tiết
HH
Xem chi tiết
BL
Xem chi tiết
NG
Xem chi tiết
AA
Xem chi tiết
NA
Xem chi tiết
NP
Xem chi tiết
KH
Xem chi tiết
TT
Xem chi tiết