Bài 7: Phép nhân các phân thức đại số

VP

Bài 1 :Tính

a,\(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

PL
12 tháng 12 2019 lúc 20:51

( \(\frac{x+1}{2x-2}\)+\(\frac{3}{x^2-1}-\frac{x-3}{2x+2}\) ) . \(\frac{4x^2-4}{5}\)

= ( \(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\) ) . \(\frac{4\left(x^2-1\right)}{5}\)

= ( \(\frac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}+\frac{6}{2\left(x+1\right)\left(x-1\right)}+\frac{-x^2+4x-3}{2\left(x+1\right)\left(x-1\right)}\) ) . \(\frac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\frac{x^2+2x+1+6-x^2+4x-3}{2\left(x+1\right)\left(x-1\right)}.\frac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\frac{6x+4}{2\left(x+1\right)\left(x-1\right)}.\frac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\frac{2\left(3x+2\right)}{2\left(x+1\right)\left(x-1\right)}.\frac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\frac{4\left(3x+2\right)}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
LB
Xem chi tiết
ND
Xem chi tiết
SK
Xem chi tiết
DL
Xem chi tiết
SK
Xem chi tiết
TK
Xem chi tiết
SK
Xem chi tiết
KN
Xem chi tiết