Ta có \(\left(n^2+n+1\right)-\left(3n+2\right)=n^2-2n-1=\left(n-1\right)^2-2\)
Với \(n>2\Rightarrow\left(n-1\right)^2-2>0\Rightarrow n^2+n+1>3n+2\)
\(\Rightarrow3n+2⋮̸n^2+n+1\)
\(\Rightarrow0\le n\le2\)
\(n=0\Rightarrow2⋮1\) (t/m)
\(n=1\Rightarrow5⋮̸3\) ko t/m
\(n=2\Rightarrow8⋮̸7\) ko t/m
Vậy \(n=0\) thì \(3n+2⋮n^2+n+1\)