b)
Để \(2n⋮\left(n-1\right)\)
\(\Rightarrow2.\left(n-1\right)+2⋮\left(n-1\right)\)
\(\Rightarrow2⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(2\right)=\left\{1;2\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=2\Rightarrow n=3\end{matrix}\right.\)
Vậy n=2;n=3 thì \(2n⋮\left(n-1\right)\)
c)
Để \(\left(3n-8\right)⋮\left(n-4\right)\)
\(\Rightarrow3.\left(n-4\right)+4⋮\left(n-4\right)\)
\(\Rightarrow4⋮\left(n-4\right)\)
\(\Rightarrow\left(n-4\right)\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-4=1\Rightarrow n=5\\n-4=2\Rightarrow n=6\\n-4=4\Rightarrow n=8\end{matrix}\right.\)
Vậy với .....................
d)
Để \(\left(2n+1\right)⋮\left(n-5\right)\)
\(\Rightarrow2.\left(n-5\right)+11⋮\left(n-5\right)\)
\(\Rightarrow11⋮\left(n-5\right)\)
\(\Rightarrow\left(n-5\right)\inƯ\left(11\right)=\left\{1;11\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-5=1\Rightarrow n=6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)
Vậy với ........................................
a)
Để \(\left(n+5\right)⋮\left(n-4\right)\)
\(\Rightarrow\left(n-4\right)+9⋮\left(n-4\right)\)
\(\Rightarrow9⋮\left(n-4\right)\)
\(\Rightarrow\left(n-4\right)\inƯ\left(9\right)=\left\{1;3;9\right\}\)
Ta có bảng :
n-4 | 1 | 3 | 9 |
n | 5 | 7 | 13 |
Vậy n=5;n=7;n=13 thì \(\left(n+5\right)⋮\left(n-4\right)\)
Toshiro Kiyoshi , Trần Đăng Nhất , Hồng Phúc Nguyễn giúp mik với các bạn !