Đại số lớp 6

VH

Chứng minh rằng với mọi số tự nhiên khác 0 ta đều có :

a) \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right).\left(3n+2\right)}=\dfrac{n}{6n+4}\)

b) \(\dfrac{5}{3.7}+\dfrac{5}{7.11}+\dfrac{5}{11.15}+...+\dfrac{5}{\left(4n-1\right).\left(4n+3\right)}=\dfrac{5n}{4n+3}\)

giúp mk với khocroikhocroi

H24
22 tháng 3 2017 lúc 16:09

a)

ta có:

\(\left\{{}\begin{matrix}\dfrac{b-a}{b-a}=1..\forall a\ne b\\\dfrac{b-a}{a.b}=\dfrac{1}{a}-\dfrac{1}{b}..\forall a,b\ne0\end{matrix}\right.\)(*)

\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+..+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(\left\{{}\begin{matrix}a=3n-1\\b=3n+2\end{matrix}\right.\)\(\Rightarrow b-a=3..\forall n\)

Thay (*) vào dãy A

\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-....+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)=\dfrac{1}{3}\left(\dfrac{3n+2-2}{2.\left(3n+2\right)}\right)=\dfrac{n}{6n+4}=VP\rightarrow dpcm\)

B) tương tự

Bình luận (1)
NL
30 tháng 8 2017 lúc 21:07

dễ quá nên tự làm nhé

Bình luận (1)

Các câu hỏi tương tự
TL
Xem chi tiết
VA
Xem chi tiết
EC
Xem chi tiết
CQ
Xem chi tiết
NQ
Xem chi tiết
KL
Xem chi tiết
KL
Xem chi tiết
ML
Xem chi tiết
DT
Xem chi tiết