Bài 3: Rút gọn phân thức

CU

Bài 1 : Tìm Min

B = \(\dfrac{\text{4+2 /4 - 2x/}}{5}\)

Bài 2 : Tìm Max

A = \(\dfrac{12}{\text{3+ /5x+1/+/2y-1/}}\)

b = \(\dfrac{5}{\text{4x2+ 4x+ zy+ y2+ 3}}\)

_Help me_

N2
15 tháng 11 2017 lúc 21:19

Bài 1: Ta có: \(B=\dfrac{4+2\left|4-2x\right|}{5}\)

Do \(\left|4-2x\right|\ge0\left(\forall x\right)\Rightarrow2\left|4-2x\right|\ge0\left(\forall x\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\left|4-2x\right|=0\Leftrightarrow x=2\)

\(\Rightarrow MinB=\dfrac{4+2.0}{5}=\dfrac{4}{5}\)

Vậy GTNN của \(B=\dfrac{4}{5}\Leftrightarrow x=2\)

Bài 2:a, \(A=\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\)

Do \(\left|5x+1\right|\ge0\left(\forall x\right);\left|2y-1\right|\ge0\left(\forall y\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)

\(\Rightarrow\left|5x+1\right|+\left|2y-1\right|\ge0\left(\forall x;y\right)\)

\(\Rightarrow3+\left|5x+1\right|+\left|2y-1\right|\ge3\left(\forall x;y\right)\)

\(\Rightarrow\dfrac{1}{3+\left|5x+1\right|+\left|2y-1\right|}\le\dfrac{1}{3}\left(\forall x;y\right)\)

\(\Rightarrow A=\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\le4\left(\forall x;y\right)\)

Vậy Max A = 4 \(\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)

b, \(B=\dfrac{5}{\left(4x^2+4x+1\right)+\left(y^2+2y+1\right)+1}=\dfrac{5}{\left(2x+1\right)^2+\left(y+1\right)^2+1}\)Bn tự cm: \(\left(2x+1\right)^2+\left(y+1\right)^2+1\ge1\left(\forall x;y\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2};y=-1\)

Vậy ta cx dễ dàng tìm được: Max\(B=\dfrac{5}{0+0+1}=5\) \(\Leftrightarrow x=-\dfrac{1}{2};y=-1\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
SK
Xem chi tiết
LH
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
PA
Xem chi tiết
PM
Xem chi tiết