Bài 7: Phương trình quy về phương trình bậc hai

BH

Bài 1: Tìm các số nguyên x,y thỏa mãn pt: (2x+1)y=x+1

AH
26 tháng 7 2018 lúc 16:34

Lời giải:
\(x\in\mathbb{Z}\Rightarrow 2x+1\neq 0\)

Ta có: \((2x+1)y=x+1\Rightarrow y=\frac{x+1}{2x+1}\)

\(y\in\mathbb{Z}\Rightarrow \frac{x+1}{2x+1}\in\mathbb{Z}\)

\(\Leftrightarrow x+1\vdots 2x+1\)

\(\Rightarrow 2(x+1)\vdots 2x+1\)

\(\Rightarrow 2x+1+1\vdots 2x+1\Rightarrow 1\vdots 2x+1\)

Vậy \(2x+1\in\left\{\pm 1\right\}\Rightarrow x\in\left\{0;-1\right\}\)

+) \(x=0\Rightarrow y=1\)

+) \(x=-1\Rightarrow y=0\)

Vậy.................

Bình luận (0)

Các câu hỏi tương tự
QN
Xem chi tiết
HM
Xem chi tiết
LL
Xem chi tiết
PK
Xem chi tiết
DK
Xem chi tiết
TM
Xem chi tiết
TH
Xem chi tiết
LN
Xem chi tiết
VC
Xem chi tiết