Violympic toán 8

NT

Bài 1. Giải các phương trình bậc cao bằng phương pháp đặt ẩn phụ

1. (x2-6x)2-2(x-3)2+2=0

2. x4-2x3+x=2

Bài 2: Giải các phương trình sau ( nhóm sau đó đặt ẩn phụ)

1. x2+(\(\frac{x}{x-1}\))2=8

2. \(\frac{\left(x-1\right)^2}{x^2}\)+\(\frac{\left(x-1\right)^2}{\left(x-2\right)^2}\)=\(\frac{40}{49}\)

Bài 3: Giải các phương trình sau ( nhóm sau đó đặt ẩn phụ)

1. \(\frac{1}{x^2}\)+x2=4+\(\frac{1}{x}\)-x

2. x2+\(\frac{1}{4x^2}\)=2x-\(\frac{1}{x}\)+1

Bài 4: Giải các phương trình sau ( nhóm sau đó đặt ẩn phụ)

1. (x2-x+1)2+5x4=6x2(x2-x+1)

2. 5\(\left(\frac{x^2-4}{x^2-1}\right)\)-\(\left(\frac{x+2}{x-1}\right)^2\)-4\(\left(\frac{x-2}{x+1}\right)^2\)=0

AH
7 tháng 2 2020 lúc 16:05

Bài 1:

1.

\((x^2-6x)^2-2(x-3)^2+2=0\)

\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x+9)+2=0\)

\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x)-16=0\)

Đặt $x^2-6x=a$ thì pt trở thành:

$a^2-2a-16=0$

$\Leftrightarrow a=1\pm \sqrt{17}$

Nếu $a=1+\sqrt{17}$

$\Leftrightarrow x^2-6x=1+\sqrt{17}$

$\Leftrightarrow (x-3)^2=10+\sqrt{17}$

$\Rightarrow x=3\pm \sqrt{10+\sqrt{17}}$

Nếu $a=1-\sqrt{17}$

$\Rightarrow x=3\pm \sqrt{10-\sqrt{17}}$

Vậy.........

2.

$x^4-2x^3+x=2$

$\Leftrightarrow x^3(x-2)+(x-2)=0$

$\Leftrightarrow (x-2)(x^3+1)=0$

$\Leftrightarrow (x-2)(x+1)(x^2-x+1)=0$

Thấy rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ nên $(x-2)(x+1)=0$

$\Rightarrow x=2$ hoặc $x=-1$

Vậy.......

Bình luận (0)
 Khách vãng lai đã xóa
AH
7 tháng 2 2020 lúc 16:51

Bài 2:

1.

ĐKXĐ: $x\neq 1$. Ta có:

\(x^2+(\frac{x}{x-1})^2=8\)

\(\Leftrightarrow x^2+(\frac{x}{x-1})^2+\frac{2x^2}{x-1}=8+\frac{2x^2}{x-1}\)

\(\Leftrightarrow (x+\frac{x}{x-1})^2=8+\frac{2x^2}{x-1}\)

\(\Leftrightarrow (\frac{x^2}{x-1})^2=8+\frac{2x^2}{x-1}\)

Đặt $\frac{x^2}{x-1}=a$ thì pt trở thành:

$a^2=8+2a$

$\Leftrightarrow (a-4)(a+2)=0$

Nếu $a=4\Leftrightarrow \frac{x^2}{x-1}=4$

$\Rightarrow x^2-4x+4=0\Leftrightarrow (x-2)^2=0\Rightarrow x=2$ (tm)

Nếu $a=-2\Leftrightarrow \frac{x^2}{x-1}=-2$

$x^2+2x-2=0\Rightarrow x=-1\pm \sqrt{3}$ (tm)

Vậy........

2. ĐKXĐ: $x\neq 0; 2$

$(\frac{x-1}{x})^2+(\frac{x-1}{x-2})^2=\frac{40}{49}$

$\Leftrightarrow (\frac{x-1}{x}+\frac{x-1}{x-2})^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$

$\Leftrightarrow 4\left[\frac{(x-1)^2}{x(x-2)}\right]^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$

Đặt $\frac{(x-1)^2}{x(x-2)}=a$ thì pt trở thành:

$4a^2-2a=\frac{40}{49}$

$\Rightarrow 2a^2-a-\frac{20}{49}=0$

$\Rightarrow a=\frac{7\pm \sqrt{209}}{28}$

$\Leftrightarrow 1+\frac{1}{x(x-2)}=\frac{7\pm \sqrt{209}}{28}$

$\Leftrightarrow \frac{1}{x(x-2)}=\frac{-21\pm \sqrt{209}}{28}$

$\Rightarrow x(x-2)=\frac{28}{-21\pm \sqrt{209}}$

$\Rightarrow (x-1)^2=\frac{7\pm \sqrt{209}}{-21\pm \sqrt{209}}$.

Dễ thấy $\frac{7+\sqrt{209}}{-21+\sqrt{209}}< 0$ nên vô lý

Do đó $(x-1)^2=\frac{7-\sqrt{209}}{-21-\sqrt{209}}$

$\Leftrightarrow x=1\pm \sqrt{\frac{7-\sqrt{209}}{-21-\sqrt{209}}}$

Vậy........

Bình luận (0)
 Khách vãng lai đã xóa
AH
7 tháng 2 2020 lúc 17:05

Bài 3:

ĐKXĐ: $x\neq 0$

PT $\Leftrightarrow (x-\frac{1}{x})^2+2=4-(x-\frac{1}{x})$

Đặt $x-\frac{1}{x}=a$ thì pt trở thành:

$a^2+2=4-a$

$\Leftrightarrow a^2+a-2=0$

$\Leftrightarrow (a-1)(a+2)=0\Rightarrow a=1$ hoặc $a=-2$

Nếu $a=1\Leftrightarrow x^2-1=x$

$\Leftrightarrow x^2-x-1=0\Rightarrow x=\frac{1\pm \sqrt{5}}{2}$

Nếu $a=-2\Leftrightarrow x^2-1=-2x$

$\Leftrightarrow x^2+2x-1=0\Rightarrow x=-1\pm \sqrt{2}$

Vậy............

2. ĐKXĐ: $x\neq 0$

\(x^2+\frac{1}{4x^2}=2x-\frac{1}{x}+1\)

$\Rightarrow 4x^2+\frac{1}{x^2}=8x-\frac{4}{x}+4$

$\Rightarrow (2x-\frac{1}{x})^2+4=4(2x-\frac{1}{x})+4$

Đặt $2x-\frac{1}{x}=a$ thì pt trở thành:

$a^2+4=4a+4$

$\Leftrightarrow a(a-4)=0\Rightarrow a=0$ hoặc $a=4$

Nếu $a=0\Leftrightarrow 2x-\frac{1}{x}=0$

$\Rightarrow 2x=\frac{1}{x}\Rightarrow x=\pm \sqrt{\frac{1}{2}}$

Nếu $a=4\Rightarrow 2x^2-4x-1=0\Rightarrow x=\frac{2\pm \sqrt{6}}{2}$

Bình luận (0)
 Khách vãng lai đã xóa
AH
7 tháng 2 2020 lúc 17:13

Bài 4:

1. Đặt $x^2-x+1=a; x^2=b$ thì pt trở thành:

$a^2+5b^2=6ab$

$\Leftrightarrow a^2-b^2+6b^2-6ab=0$

$\Leftrightarrow (a-b)(a+b-6b)=0$

$\Leftrightarrow (a-b)(a-5b)=0$

Nếu $a-b=0$

$\Leftrightarrow -x+1=0\Rightarrow x=1$

Nếu $a-5b=0\Leftrightarrow -4x^2-x+1=0$

$\Rightarrow x=\frac{-1\pm \sqrt{17}}{8}$

2. ĐK: $x\neq pm 1$

Đặt $\frac{x-2}{x+1}=a; \frac{x+2}{x-1}=b$ thì pt trở thành:

\(5ab-b^2-4a^2=0\)

$\Leftrightarrow (b-4a)(a-b)=0$

Nếu $b-4a=0$

$\Leftrightarrow \frac{4(x-2)}{x+1}=\frac{x+2}{x-1}$

$\Rightarrow x^2-5x+2=0\Rightarrow x=\frac{5\pm \sqrt{17}}{2}$

Nếu $a-b=0$

$\Leftrightarrow \frac{x-2}{x+1}=\frac{x+2}{x-1}$

$\Rightarrow x=0$

Bình luận (0)
 Khách vãng lai đã xóa
NN
8 tháng 2 2020 lúc 8:56

Bài này phải lên

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LP
Xem chi tiết
VH
Xem chi tiết
NQ
Xem chi tiết
NL
Xem chi tiết
NQ
Xem chi tiết
DA
Xem chi tiết
LA
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết