Violympic toán 9

KC

Bài 1: Cho các biểu thức

A= \(\frac{\sqrt{x}+1}{\sqrt{x}+2}\) và B= \(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{1-\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}+4}{x-\sqrt{x}-2}\)với \(x\ge0;x\ne4\)

1. Tính giá trị cảu A khi \(x=7+4\sqrt{3}\)

2. Chứng minh rằng B=\(\frac{-3}{2-\sqrt{x}}\)

3. Tìm \(x\) để \(\frac{B}{A}\) < \(-1\)

H24
18 tháng 3 2019 lúc 21:59

1.\(x=7+4\sqrt{3}\)

\(=\left(\sqrt{3}+2\right)^2\)

Thay x=\(\left(2+\sqrt{3}\right)^2\), ta có:

\(A=\frac{3+\sqrt{3}}{4+\sqrt{3}}\)

2. \(B=\frac{\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(B=\frac{-3}{2-\sqrt{x}}\left(đpcm\right)\)

3. \(\frac{B}{A}=\frac{\frac{-3}{2-\sqrt{x}}}{\frac{\sqrt{x}+1}{\sqrt{x}+2}}=\frac{-3}{2-\sqrt{x}}.\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

\(\frac{B}{A}< -1\Rightarrow\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}< -1\)

\(\Leftrightarrow\frac{3\sqrt{x}+6+x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{x-2\sqrt{x}+4}{x-\sqrt{x}-2}< 0\)

\(\Rightarrow x-\sqrt{x}-2< 0\)(Vì \(x-2\sqrt{x}+4>0\))

\(\Leftrightarrow-1< x< 2\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
NH
Xem chi tiết
DH
Xem chi tiết
NH
Xem chi tiết
AN
Xem chi tiết
AN
Xem chi tiết
TH
Xem chi tiết
NM
Xem chi tiết
DH
Xem chi tiết