Đại số lớp 6

NH

Bài 1:

a. Cho a, b, m thuộc N*. So sánh 2 phân số \(\dfrac{a}{b}\)\(\dfrac{a+m}{b+m}\)

b. Áp dụng so sánh: A = \(\dfrac{10^{1992}+1}{10^{1991}+1}\) và B = \(\dfrac{10^{1993}+1}{10^{1992}+1}\)

C = \(\dfrac{2010^{2008}+1}{2010^{2009}+1}\) và D = \(\dfrac{2010^{2007}+1}{2010^{2008}+1}\)

MS
28 tháng 7 2017 lúc 12:47

a) Xét:

\(a>b\)

\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+m}{b+m}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{a+m}\)

\(a< b\)

\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)

\(a=b\)

\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+m}{b+m}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+m}{b+m}=1\)

Mk chỉ áp dụng tính 1 câu,câu sau làm tương tự

b)

Ta có:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{10^{1993}+1}{10^{1992}+1}< 1\)

\(B< \dfrac{10^{1993}+1+9}{10^{1992}+1+9}\Rightarrow B< \dfrac{10^{1993}+10}{10^{1992}+10}\Rightarrow B< \dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\Rightarrow B< \dfrac{10^{1992}+1}{10^{1991}+1}=A\)

\(B< A\)

@@ ~ học tốt ~

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
GP
Xem chi tiết
US
Xem chi tiết
NH
Xem chi tiết
KL
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
ML
Xem chi tiết
PL
Xem chi tiết