Đại số lớp 6

US

Tính:

D =\(\dfrac{\dfrac{2010}{1}+\dfrac{2009}{2}+\dfrac{2008}{3}+...+\dfrac{1}{2010}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2011}}\)

CV
18 tháng 6 2017 lúc 22:45

Đặt D1 = \(\dfrac{2010}{1}\) + \(\dfrac{2009}{2}\) + \(\dfrac{2008}{3}\) + ... + \(\dfrac{1}{2010}\)

= 1 + ( 1+ \(\dfrac{2009}{2}\)) + ( 1+ \(\dfrac{2008}{3}\)) + ... + (1+\(\dfrac{1}{2010}\))

= \(\dfrac{2011}{2}\) + \(\dfrac{2011}{3}\)+ ... + \(\dfrac{2011}{2010}\) + \(\dfrac{2011}{2011}\)

= 2011. ( \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2010}\) + \(\dfrac{1}{2011}\))

Đặt D2 = \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2010}\) + \(\dfrac{1}{2011}\)

=> D = 2011

cho mk 1 tick nha ok

Bình luận (0)

Các câu hỏi tương tự
KL
Xem chi tiết
TD
Xem chi tiết
KL
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
ML
Xem chi tiết
PL
Xem chi tiết
LB
Xem chi tiết
TH
Xem chi tiết