Một người bán bánh bao có 10 chiếc, trong đó có 4 chiếc cũ hôm qua hấp lại. Ta mua ngẫu nhiên 3 cái. Gọi X là số bánh bao ta mua có trong 3 chiếc. Lập bảng phân phối xác xuất.
Cho hàm số:
\(f(x)= x^3 – 3mx^2 + 3(2m-1)x + 1\) ( \(m\) là tham số)
a) Xác định \(m\) để hàm số đồng biến trên một tập xác định
b) Với giá trị nào của tham số \(m\), hàm số có một cực đại và một cực tiểu
c) Xác định \(m\) để \(f’’(x)>6x\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
\(y=\dfrac{x+3}{x+1}\)
b) Chứng minh rằng với mọi giá trị của m, đường thẳng \(y=2x+m\) luôn cắt (C) tại hai điểm phân biệt M và N.
c) Xác định m sao cho độ dài MN là nhỏ nhất
d) Tiếp tuyến tại một điểm S bất kì của (C) luôn cắt hai tiệm cận của (C) tại P và Q. Chứng minh rằng S là trung điểm của PQ
19. Hs y= x^4 + 2x^3 - 2017 có bn điểm cực trị?
20. Cho hs y = -x^3 +6x^2 - 9x + 4 có đồ thị (C). Gọi d là đg thẳng đi qua giao điểm của (C) vs trục tung . Để d cắt (C) tại 3 điểm phân biệt thì d có hệ số góc k thoả mãn?
Cho em hỏi bài này ạ: Lập PT đường thẳng d đi qua M(1;1) biết d tiếp xúc với đường tròn C có PT: ( x-1 )^2 + ( y+2) ^2 = 9
Cho tứ diện ABCD có các cạnh AB , AC và AD đôi 1 vuông góc với nhau. AB = 6a , AC = 7a và AD = 12a . Gọi M,N,P tương ứng là trung điểm các cạnh BC , CD, BD.Tính thể tích của khối tứ diện AMNP.
Cho hàm số:
\(y = -x^4 + 2mx^2 – 2m + 1\) ( \(m\) là tham số) có đồ thị \((C_m)\)
a) Biện luận theo \(m\) số cực trị của hàm số
b) Với giá trị nào của \(m\) thì \((C_m)\) cắt trục hoành?
c) Xác định \(m
\) để \((C_m)\) có cực đại, cực tiểu
Cho hàm số \(y = 2x^2 + 2mx + m -1\) có đồ thị là \((C_m)\), \(m \)là tham số
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi \(m=1\)
b) Xác định m để hàm số:
- Đồng biến trên khoảng (-1, +∞)
- Có cực trị trên khoảng (-1, +∞)
c) Chứng minh rằng \((C_m)\) luôn cắt trục hoành tại hai điểm phân biệt với mọi \(m\)
Tiệm cận ngang của đồ thị hàm số y = 3x +1/x-1 là:
Tập hợp tất cả các giá trị thực của tham số m để hs y= \(\dfrac{-1}{3}x^3+x^2+mx-2019\) nghịch biến trên khoảng (0 ; dương vô cùng)