Chương II - Đường tròn

VQ

B1: Cho (O;R) đường kính AB cố định. Trên tia đối của AB lấy C sao cho AC = R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm OA, qua D vẽ dây cung EF bất kì của (O) (EF không là đường kính) . Tia BE cắt d tại M , BF cắt d tại N . Chứng minh tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi

B2:Cho (O;R) và dây cung AB sao cho BOC =90 ,Tiếp tuyến với đường tròn tại B và C cắt nhau ở A ,trên cung nhỏ BC lấy I , qua I vẽ tiếp tuyến với đường tròn cắt AB , AC tại M và N .OM,ON cắt BC lần lượt tại H và K .Chứng minh \(S_{OHK}=S_{MHKN}\)

B3: Cho điểm A nằm ngoài đường tròn tâm O, 2 tiếp tuyến AB,AC (B,C là các tiếp điểm).H là giao điểm của AO và BC.Đường tròn đường kính CH cắt (O) tại D .I là trung điểm của AB.ọi T là trung điểm của BD.E là giao điểm của (I) và AC , S là giao điểm của AO và BE. Chứng minh TS // HD


Các câu hỏi tương tự
VQ
Xem chi tiết
NT
Xem chi tiết
BT
Xem chi tiết
NK
Xem chi tiết
TA
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết
NK
Xem chi tiết