Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

ND

a)sin^4\(\frac{x}{3}\) +cos^4\(\frac{x}{3}\)=\(\frac{5}{8}\)

b)4(sin^4x+cos^4x)+\(\sqrt{3}\)sin4x=2

c)cos^4x+sin^6x=cos2x

d)cos^6x+sin^6x=cos4x

2cos^2x+2cos^2x+4cos^3(2x)-3cos2x=5

NL
5 tháng 9 2020 lúc 19:58

a/

\(\Leftrightarrow\left(sin^2\frac{x}{3}+cos^2\frac{x}{3}\right)^2-2sin^2\frac{x}{3}.cos^2\frac{x}{3}=\frac{5}{8}\)

\(\Leftrightarrow1-\frac{1}{2}sin^2\frac{2x}{3}=\frac{5}{8}\)

\(\Leftrightarrow1-\frac{1}{4}\left(1-cos\frac{4x}{3}\right)=\frac{5}{8}\)

\(\Leftrightarrow cos\frac{4x}{3}=-\frac{1}{2}\)

\(\Leftrightarrow\frac{4x}{3}=\pm\frac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\frac{\pi}{2}+\frac{k3\pi}{2}\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 20:01

b/

\(\Leftrightarrow4\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)

\(\Leftrightarrow4-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)

\(\Leftrightarrow-2sin^22x+\sqrt{3}sin4x=-2\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-1\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin4x+\frac{1}{2}cos4x=-\frac{1}{2}\)

\(\Leftrightarrow sin\left(4x+\frac{\pi}{6}\right)=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{6}=-\frac{\pi}{6}+k2\pi\\4x+\frac{\pi}{6}=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+\frac{k\pi}{2}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 20:08

c/

\(\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)

\(\Leftrightarrow-cos^32x+5cos^22x-7cos2x+3=0\)

\(\Leftrightarrow\left(3-cos2x\right)\left(cos2x-1\right)^2=0\)

\(\Leftrightarrow cos2x=1\)

\(\Leftrightarrow x=k\pi\)

d/

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos4x\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=cos4x\)

\(\Leftrightarrow1-\frac{3}{8}\left(1-cos4x\right)=cos4x\)

\(\Leftrightarrow cos4x=1\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 20:09

Câu cuối bạn coi lại đề, sao 2 số hạng đầu giống hệt nhau vậy?

Bình luận (0)
NL
5 tháng 9 2020 lúc 20:44

e/

\(2cos^2x+2cos^22x+4cos^32x-3cos2x=5\)

\(\Leftrightarrow1+cos2x+2cos^22x+4cos^32x-3cos2x=5\)

\(\Leftrightarrow2cos^32x+cos^22x-cos2x-2=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos^22x+3cos2x+2\right)=0\)

\(\Leftrightarrow cos2x=1\)

\(\Leftrightarrow x=k\pi\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
PT
Xem chi tiết
NN
Xem chi tiết