Violympic toán 9

VH

\(A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

a) Rút gọn A.

b) Tìm a để A < 0.

c) Tìm a để A = -2.

Ai đó giải dùm tôi được không?

TP
18 tháng 3 2020 lúc 10:02

a) \(A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\cdot\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(A=\left(\frac{a-1}{2\sqrt{a}}\right)^2\cdot\left[\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]\)

\(A=\frac{\left(a-1\right)^2\cdot\left(-4\sqrt{a}\right)}{4a\cdot\left(a-1\right)}\)

\(A=\frac{-\left(a-1\right)}{\sqrt{a}}=\frac{-a+1}{\sqrt{a}}\)

b) \(A< 0\Leftrightarrow\frac{-a+1}{\sqrt{a}}< 0\Leftrightarrow-a+1< 0\Leftrightarrow a>1\)

c) \(A=-2\Leftrightarrow\frac{-a+1}{\sqrt{a}}=-2\)

\(\Leftrightarrow-a+1=-2\sqrt{a}\)

\(\Leftrightarrow a-2\sqrt{a}-1=0\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)^2-2=0\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)^2=2\)

\(\sqrt{a}-1\ge-1\Rightarrow\sqrt{a}-1=\sqrt{2}\Leftrightarrow a=3+2\sqrt{2}\) (t/m)

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
VH
Xem chi tiết
KA
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
VY
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
AR
Xem chi tiết