Bài 3: Giải hệ phương trình bằng phương pháp thế

HT

ai giúp với
1.\(\left\{{}\begin{matrix}x^2+y^2-x-y=102\\xy+x+y=69\end{matrix}\right.\)

2.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^3+y^3=xy\end{matrix}\right.\)

TD
1 tháng 1 2019 lúc 18:53

\(\left\{{}\begin{matrix}x^2+y^2-x-y=102\\xy+x+y=69\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy-\left(x+y\right)=102\\xy+\left(x+y\right)=69\end{matrix}\right.\)

Đặt \(S=x+y\)

\(P=xy\)

\(\Rightarrow\left\{{}\begin{matrix}S^2-2P-S=102\\P+S=69\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}S^2-2.\left(69-S\right)-S=102\\P=69-S\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}S^2-138+2S-S=102\\P=69-S\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}S^2+S-240\\P=69-S\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}S=15\\S=-16\end{matrix}\right.\\P=69-S\end{matrix}\right.\)

+) Với \(S=15;P=54\) có :

\(\left\{{}\begin{matrix}S=x+y\\P=xy\end{matrix}\right.\Rightarrow x,y\) là nghiệm của pt : \(x^2-15x+54=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\Rightarrow y=6\\x=6\Rightarrow y=9\end{matrix}\right.\)

+) Với \(S=-16;P=85\) có :

\(\left\{{}\begin{matrix}S=x+y\\P=xy\end{matrix}\right.\Rightarrow x,y\) là nghiệm của pt : \(x^2+16x+85=0\)

\(\Leftrightarrow\left(x+8\right)^2+21=0\) (vô lí)

\(\Rightarrow\) pt vô nghiệm

Vậy nghiệm của hệ pt đã cho là \(\left(x;y\right):\left(6;9\right),\left(9;6\right)\)

Bình luận (0)
TD
1 tháng 1 2019 lúc 19:02

\(2\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=1\\\left(x+y\right)\left(x^2-xy+y^2\right)-xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=1\\\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]-xy=0\end{matrix}\right.\)

Đặt \(S=x+y;P=xy\)

\(\Rightarrow\left\{{}\begin{matrix}S^2-P=1\\S\left(S^2-3P\right)-P=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}S^2-P=1\\S^3-3PS-P=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P=S^2-1\\S^3-3S\left(S^2-1\right)+1-S^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P=S^2-1\\S^3-3S^3+3S-S^2=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2S^3-S^2+3S+1=0\\P=S^2-1\end{matrix}\right.\)

Còn lại thì bấm máy tính !!!

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
TA
Xem chi tiết
LN
Xem chi tiết
NN
Xem chi tiết
CP
Xem chi tiết
TN
Xem chi tiết
TM
Xem chi tiết
TA
Xem chi tiết
AP
Xem chi tiết