Bài 6: Hệ thức Vi-et và ứng dụng

H24

ai giải giúp mình đi mình đang cần gấp ạ

LD
6 tháng 4 2023 lúc 22:15

\(x^2-2\left(m-2\right)x+m^2+2m-3=0\left(1\right)\)

Để phương trình có hai nghiệm phân biệt thì Δ' > 0

\(\Rightarrow\left(m-2\right)^2-m^2-2m+3>0\Leftrightarrow m^2-4m+4-m^2-2m+3>0\Leftrightarrow-6m+7>0\Leftrightarrow m< \dfrac{7}{6}\)\)

Theo viét : \(\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=m^2+2m-3\end{matrix}\right.\)\)

Lại có :\( \dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{5}\)

\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{x_1+x_2}{5}\)

\(\Rightarrow\left(x_1+x_2\right)\left(x_1x_2\right)=5\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(2m-4\right)\left(m^2+2m-3\right)=5\left(2m-4\right)\)

\(\Leftrightarrow2m^3+4m^2-6m-4m^2-8m+12=10m-20\)

\(\Leftrightarrow2m^3-24m+32=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-4\left(n\right)\\m=2\left(l\right)\end{matrix}\right.\)

Vậy \(m=-4\) thì thỏa điều kiện

Bình luận (5)

Các câu hỏi tương tự
DT
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
SS
Xem chi tiết