a, \(\frac{xy+3y}{xy}=\frac{y\left(x+3\right)}{xy}=\frac{x+3}{x}\)
b, \(\frac{x^2+3x-y^2-3y}{x^2-y^2}=\frac{\left(x^2-y^2\right)+3\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x-y\right)\left(x+y+3\right)}{\left(x-y\right)\left(x+y\right)}\)
=\(\frac{x+y+3}{x+y}=1\frac{3}{x+y}\)
c, \(\frac{-3x+3y}{x-y}=\frac{-3\left(x-y\right)}{x-y}=-3\)