A=\(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}\)+\(\sqrt{a}.\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
A=(1+\(\sqrt{a}\)+a)+\(\frac{\sqrt{a}}{1+\sqrt{a}}\)
A=\(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}\)+\(\sqrt{a}.\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)
A=(1+\(\sqrt{a}\)+a)+\(\frac{\sqrt{a}}{1+\sqrt{a}}\)
Cho P = \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
a) Rút gọn P
b) So sánh P với -1
Cho P = \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)=\frac{1}{\sqrt{a}}\). So sánh P với -1.
Mình rút gọn rồi đó nha.
Rút gọn: A= \(\left(\frac{1}{\sqrt{a}+\sqrt{a+1}}-\frac{1}{\sqrt{a}-\sqrt{a-1}}\right):\left(1+\frac{\sqrt{a+1}}{\sqrt{a-1}}\right)\)
A = \(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)
a) rút gọn A
b) Tính A với a = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
Cho biểu thức:
\(P=\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left[1-\frac{1}{\sqrt{a}}\right]\left[\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right]\)
a)Rút gọn P
b)Tìm a để P=7
P=\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a) rút gọn P
1. Rút gọn \(A=\frac{\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}}{\sqrt{\left(\sqrt{5}+1\right)\cdot\sqrt{6-2\sqrt{5}}}}\)
2.Tính a) \(B=\left(\sqrt[3]{2}+1\right)^3\cdot\left(\sqrt[3]{2}-1\right)^3\)
b)Tìm C=\(a^3b-ab^3\) với \(a=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\); \(b=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
3. Giải \(\left|x^2-x+1\right|-\left|x-2\right|=6\)
Rút gọn:\(1-\left(\frac{2a\sqrt{a}+a-\sqrt{a}}{a\sqrt{a}-1}-\frac{2\sqrt{a}-1}{\sqrt{a}-1}\right)\frac{\sqrt{a-a}}{2\sqrt{a}-1}\)
Cho A=\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}+1}-\frac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a) Rút gọn
b) Tìm a để A=-4