Chương I - Căn bậc hai. Căn bậc ba

H24

\(A=\dfrac{\sqrt{X}-2}{\sqrt{X}-1};B=\dfrac{\sqrt{X}}{\sqrt{X}+1}-\dfrac{\sqrt{X}-4}{1-X}\left(X\ge1;X\ne1\right)\)

a)     Tính giá trị của biểu thức A khi x = 25

b)    Rút gọn biểu thức B

c)     Tìm x để A: B <1/2

NT
29 tháng 10 2023 lúc 20:14

a: Khi x=25 thì \(A=\dfrac{5-2}{5-1}=\dfrac{3}{4}\)

b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-4}{x-1}=\dfrac{x-4}{x-1}\)

c: \(P=\dfrac{A}{B}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}:\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

P<1/2

=>P-1/2<0

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{1}{2}< 0\)

=>\(\dfrac{2\sqrt{x}+2-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}< 0\)

=>\(\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}< 0\)

=>\(x\in\varnothing\)

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
DD
Xem chi tiết
LL
Xem chi tiết
NN
Xem chi tiết
MN
Xem chi tiết
LG
Xem chi tiết
LG
Xem chi tiết
LL
Xem chi tiết
LG
Xem chi tiết