Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

H24

a)cho a,b>0. CM : 9 (1+a)(1+b)\(\ge\)\(\left(1+\sqrt{ab}\right)^2\)

b)với a,b>0. Tìm GTNN của biểu thức: M=\(\left(1+a\right)\left(1+\frac{b}{a}\right)\left(1+\frac{4}{\sqrt{b}}\right)^2\)

NL
11 tháng 2 2020 lúc 21:21

Hình như bạn viết nhầm đề, làm gì có số 9 ở đầu?

\(\frac{1}{1+a}+\frac{1}{1+b}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+b\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

Cộng vế với vế: \(1\ge\frac{1+\sqrt{ab}}{\sqrt{\left(1+a\right)\left(1+b\right)}}\Leftrightarrow\left(1+a\right)\left(1+b\right)\ge\left(1+\sqrt{ab}\right)^2\)

Áp dụng xuống dưới ta có:

\(M\ge\left(1+\sqrt{b}\right)^2\left(1+\frac{4}{\sqrt{b}}\right)^2=\left(5+\frac{4}{\sqrt{b}}+\sqrt{b}\right)^2\ge\left(5+2\sqrt{\frac{4\sqrt{b}}{\sqrt{b}}}\right)^2=81\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=4\\a=2\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
TK
Xem chi tiết
NH
Xem chi tiết
BL
Xem chi tiết
TH
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
KA
Xem chi tiết
NH
Xem chi tiết