Violympic toán 9

CP

a,b là các số dương. CMR:

\(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)

NL
10 tháng 5 2020 lúc 0:58

\(\Leftrightarrow\frac{\left(2a^2+3b^2\right)\left(a+b\right)}{2a^3+3b^3}+\frac{\left(2b^2+3a^2\right)\left(a+b\right)}{2b^3+3a^3}\le4\)

\(\Leftrightarrow\frac{2a^3+3b^3+2a^2b+3ab^2}{2a^3+3b^3}+\frac{2b^3+3a^3+2ab^2+3ab^2}{2b^3+3a^3}\le4\)

\(\Leftrightarrow\frac{2a^2b+3ab^2}{2a^3+3b^3}+\frac{2ab^2+3ab^2}{2b^3+3a^3}\le2\)

\(\Leftrightarrow\frac{2\left(\frac{a}{b}\right)^2+3\left(\frac{a}{b}\right)}{2\left(\frac{a}{b}\right)^3+3}+\frac{2\left(\frac{a}{b}\right)+3\left(\frac{a}{b}\right)^2}{3\left(\frac{a}{b}\right)^3+2}\le2\)

Đặt \(\frac{a}{b}=x>0\Rightarrow\frac{2x^2+3x}{2x^3+3}+\frac{3x^2+2x}{3x^3+2}\le2\)

\(\Leftrightarrow\left(x-1\right)^2\left(12x^4+12x^3-x^2+12x+12\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=1\) hay \(a=b\)

Hơi trâu bò :D

Bình luận (0)

Các câu hỏi tương tự
AP
Xem chi tiết
AP
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết
BL
Xem chi tiết
PM
Xem chi tiết
NN
Xem chi tiết
GG
Xem chi tiết
NH
Xem chi tiết