Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

VN

A= tích phân từ 0 đến pi/2 của [căn sinx/(căn sinx+căn cosx)]dx.

B = tích phân từ 0 đến pi/2 của [ căn cosx /( căn cosx + căn sinx)]dx.

NL
14 tháng 3 2019 lúc 22:02

Đề thế này hả bạn?

\(A=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx\) (1)

Đặt \(\frac{\pi}{2}-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=\frac{\pi}{2}\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)

\(A=\int\limits^0_{\frac{\pi}{2}}\frac{\sqrt{cost}}{\sqrt{cost}+\sqrt{sint}}\left(-dt\right)=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cost}}{\sqrt{sint}+\sqrt{cost}}dt=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx\) (2)

Cộng vế với vế của (1) và (2):

\(2A=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx+\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}+\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx=\int\limits^{\frac{\pi}{2}}_0dx=\frac{\pi}{2}\)

\(\Rightarrow A=\frac{\pi}{4}\)

b/ \(B=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{cosx}+\sqrt{sinx}}dx\)

Từ (2) ta thấy \(B=A=\frac{\pi}{4}\)

Bình luận (1)

Các câu hỏi tương tự
VN
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết