a) Gọi 3 số tự nhiên liên tiếp là \(x,x+1,x+2\left(x\in N\right)\)
- Nếu \(x=3k\) ( thỏa mãn ). Nếu \(x=3k+1\) thì \(x+2=3k+1+2=\left(3k+3\right)⋮3\)
- Nếu \(x=3k+2\) thì \(x+1=3k+1+2=\left(3k+3\right)⋮3\)
Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.
b) Nhận thấy \(17^n,17^n+1,17^n+2\) là 3 số tự nhiên liên tiếp mà \(17^n\) không chia hết cho 3, nên trong 2 số còn lại 1 số phải \(⋮3\)
Do vậy: \(A=\left(17^n+1\right)\left(17^n+2\right)⋮3\)